
SYNTHESIS OF BRIDGED TETRACYCLIC SYSTEMS RELATED TO DITERPENES THROUGH ACID-INDUCED INTRAMOLECULAR CYCLISATION OF DIAZOMETHYL KETONES

Sanat K Maity, Basudeb Basu and Debabrata Mukherjee*

Department of Organic Chemistry Indian Association for the Cultivation of Science Calcutta-700032, India

Summary The tetracyclic bridged-ring enones $\underline{5}$, $\underline{6}$ and $\underline{23}$ have been prepared through acid-catalysed intramolecular cyclisation of the diazomethyl ketones $\underline{11}$, $\underline{16}$ and $\underline{22}$ respectively for entry into the ring system of aphidicolin(4) and related diterpenes

Several tetracyclic diterpenes, e g stemodinone (1), 2-desoxystemodinone (2), maritimol (3) and aphidicolin (4) incorporate basic tetracyclo/10 3 1 0^{1,10} 0^{2,7}/hexadecane framework and have attracted 1,2 much attention of synthetic chemists in recent years. Construction of the bicyclo/3 2 1_foctane parts (i e rings C and D) of the diterpenes has been accomplished by van Tamelen et al 1,2b and Kelly et al 2c through skeletal rearrangement of suitable bicyclo/2 2 2_foctanes. For synthetic entry into the basic tetracyclic framework of aphidicolin (4) and related diterpenes, we have conveniently synthesised the enones 5, 6 and 23 through acid-catalysed intramolecular cyclisation of the diazomethyl ketones 11, 16 and 22 respectively. The rings C and D of 5 and 6 are bicyclo/3 2 1_foctanes while 23 incorporates a bicyclo/2 2 2_foctane.

The benzindanones 7^3 and 12^4 were prepared according to reported procedures. The ketone $\overline{2}$ was treated with diethyl carbonate in the presence of NaH to give the β -ketoester 8,m p 156-157 $^{\circ}$ in 85% yield Alkylation of the sodio-enolate of $\underline{8}$ with ethyl bromoacetate in DME afforded an alkylated product (88%),m p $140-141^{\circ}$,which on acid hydrolysis furnished the keto-acid 9,m p $219-220^{\circ}$ in 80%Similarly, alkylation of the β -ketoester 13,m p 128 $^{\circ}$ with ethyl α -bromopropionate and subsequent hydrolysis of the product (m p $146-148^{\circ}$) furnished the keto-acid 14 (71% from 13) as a diastereoisomeric mixture,m p 206-210°(d) Removal of the carbonyl group from 9 and 14 was accomplished through reduction with NaBH $_{\!L}$ in aqueous NaOH followed by catalytic hydrogenation (10% Pd on carbon) in AcOH The acids $\underline{10}$,m p $157-158^{\circ}$, and $\underline{15}$,m p $154-158^{\circ}$, were thus obtained in 84% and 82%yields respectively The diazoketone 11, prepared from the acid chloride of 10 with CH_3N_2 , underwent intramolecular cyclisation on treatment with trifluoroacetic acid (TFA) in CH_2Cl_2 at -25° to afford the enone 5 in 50% yield,m p 174-175°, IR(KBr) 1707,1655,1630,1605 cm⁻¹, ¹H-NMR (CDCl₂) δ 1 9-3 03(m,9H) 3 89(s,3H), 6 31(t,1H,small allylic coupling), 7 12(d of d,1H,J=8, 3 Hz), 7 4(d,1H,J=8 Hz), 7 64(d,1H, J=3 Hz) Similar treatment of 16 afforded 6 (52%), m p $180-181^{\circ}$, IR(KBr) 1708,1658,1638,1600 cm⁻¹, 1 H-NMR (CDCl₂) δ 1 13 (d,1H,J=6 5 Hz), 1 88-3 02(m,8H), 3 86(s,3H), 6 24(t,1H), 7 08(d of d,1H,J=8, 2.5 Hz), 7.41 (d,1H,J=8 Hz), 7.59 (d,1H,J=2.5 Hz)

For the synthesis of the enone 23, the ketone 175 was converted into the β-ketonitrile 18, m p 181-182° in 78% yield following the isoxazole procedure of Johnson and coworkers. Reduction of 18 with NaBH₄ and subsequent dehydration of the crude hydroxy-nitrile with toluene-p-sulphonic acid in benzene afforded the unsaturated nitrile 19 (80%), m p 164-165° Reduction of 19 with Mg and MeOH and subsequent hydrolysis of the saturated nitrile 20 (m p 176°) with 20% methanolic KOH furnished 21, m p 220-221° in 74% overall yield (two steps). The diazoketone 22, prepared from the acid chloride of 21, was treated with TFA in CH₂Cl₂ at -20° to afford the the enone 23 (25%), m p 182-183°, IR(CHCl₃) 1725, 1658,1630,1605 cm⁻¹, ¹H-NMR (CDCl₃) δ 1 8-3 2 (m,9H), 3 91(s,3H), 6 46(t,1H), 7 17(d of d,1H,J=8,3 Hz) 7 42(d,1H,J=8 Hz), 7 69(d,1H,J=3 Hz). The splitting pattern and relative chemical shifts of the aromatic hydrogens of the enones are similar to those reported for a related system. In order to obtain both B/C-trans and B/C-cis fused products we are currently investigating reductions of the enones under different conditions. Catalytic hydrogenation (10% Pd on carbon, 3 moles of H₂) of 5 proceeded stereoselectively to yield a pure isomer of 24 in 76% yield, m p 120-121°, IR(CHCl₃) 1706, 1605,1570 cm⁻¹, ¹H-NMR (CDCl₃) 0 86-3 1(m,14H), 3 77(s,3H), 6 55-6 79(m,2H), 7 1(d,1H,J=8 Hz). To ascertain the stereochemistry of the B/C ring juncture, X-ray analysis of 24 is under way

References

- For aphidicolin syntheses, see E E van Tamelen, S R Zawacky, R K Russell and J G Carlson, J Am Chem Soc , $\underline{105}$, 142 (1983) and references cited therein
- For the syntheses of stemodia diterpenes, see (a) E J Corey, M A Tius and J Das, J Am Chem Soc, 102, 7612 (1980), (b) E E van Tamelen, J G Carlson, R K Russell and S R Zawacky, ibid, 103,4615 (1981), (c) R B Kelly, M L Harley, S J Alward and P S Manchand, Can J Chem, 60, 675 (1982)
- 3 A Chatterjee, S R Raychoudhuri and S K Chatterjee, Tetrahedron, 37, 3653 (1981)
- 4 L C Bateman and R Robinson, J Chem Soc ,398 (1941)
- 5 R A Barnes and W M Bush, J Am Chem Soc , <u>80</u>, 4714 (1958)
- 6 W S Johnson, J W Peterson and C D Gutsche, J Am Chem Soc , 69, 2942 (1947)
- 7 I A Blair, L N Mander and P H C Mundill, Aust J Chem , <u>34</u>, 1235 (1981) (Received in UK 30 June 1983)